Skip to content

Llm

Bases: QueryComponent

Base LLM component.

Parameters:

Name Type Description Default
llm LLM

LLM

required
streaming bool

Streaming mode

False
Source code in llama-index-core/llama_index/core/llms/llm.py
938
939
940
941
942
943
944
945
946
947
class BaseLLMComponent(QueryComponent):
    """Base LLM component."""

    model_config = ConfigDict(arbitrary_types_allowed=True)
    llm: LLM = Field(..., description="LLM")
    streaming: bool = Field(default=False, description="Streaming mode")

    def set_callback_manager(self, callback_manager: Any) -> None:
        """Set callback manager."""
        self.llm.callback_manager = callback_manager

set_callback_manager #

set_callback_manager(callback_manager: Any) -> None

Set callback manager.

Source code in llama-index-core/llama_index/core/llms/llm.py
945
946
947
def set_callback_manager(self, callback_manager: Any) -> None:
    """Set callback manager."""
    self.llm.callback_manager = callback_manager

Bases: BaseLLMComponent

LLM completion component.

Source code in llama-index-core/llama_index/core/llms/llm.py
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
class LLMCompleteComponent(BaseLLMComponent):
    """LLM completion component."""

    def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]:
        """Validate component inputs during run_component."""
        if "prompt" not in input:
            raise ValueError("Prompt must be in input dict.")

        # do special check to see if prompt is a list of chat messages
        if isinstance(input["prompt"], get_args(List[ChatMessage])):
            if self.llm.messages_to_prompt:
                input["prompt"] = self.llm.messages_to_prompt(input["prompt"])
            input["prompt"] = validate_and_convert_stringable(input["prompt"])
        else:
            input["prompt"] = validate_and_convert_stringable(input["prompt"])
            if self.llm.completion_to_prompt:
                input["prompt"] = self.llm.completion_to_prompt(input["prompt"])

        return input

    def _run_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        prompt = kwargs["prompt"]
        # ignore all other kwargs for now

        response: Any
        if self.streaming:
            response = self.llm.stream_complete(prompt, formatted=True)
        else:
            response = self.llm.complete(prompt, formatted=True)
        return {"output": response}

    async def _arun_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        prompt = kwargs["prompt"]
        # ignore all other kwargs for now
        response = await self.llm.acomplete(prompt, formatted=True)
        return {"output": response}

    @property
    def input_keys(self) -> InputKeys:
        """Input keys."""
        # TODO: support only complete for now
        return InputKeys.from_keys({"prompt"})

    @property
    def output_keys(self) -> OutputKeys:
        """Output keys."""
        return OutputKeys.from_keys({"output"})

input_keys property #

input_keys: InputKeys

Input keys.

output_keys property #

output_keys: OutputKeys

Output keys.

Bases: BaseLLMComponent

LLM chat component.

Source code in llama-index-core/llama_index/core/llms/llm.py
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
class LLMChatComponent(BaseLLMComponent):
    """LLM chat component."""

    def _validate_component_inputs(self, input: Dict[str, Any]) -> Dict[str, Any]:
        """Validate component inputs during run_component."""
        if "messages" not in input:
            raise ValueError("Messages must be in input dict.")

        # if `messages` is a string, convert to a list of chat message
        if isinstance(input["messages"], get_args(StringableInput)):
            input["messages"] = validate_and_convert_stringable(input["messages"])
            input["messages"] = prompt_to_messages(str(input["messages"]))

        for message in input["messages"]:
            if not isinstance(message, ChatMessage):
                raise ValueError("Messages must be a list of ChatMessage")
        return input

    def _run_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        messages = kwargs["messages"]

        response: Any
        if self.streaming:
            response = self.llm.stream_chat(messages)
        else:
            response = self.llm.chat(messages)
        return {"output": response}

    async def _arun_component(self, **kwargs: Any) -> Any:
        """Run component."""
        # TODO: support only complete for now
        # non-trivial to figure how to support chat/complete/etc.
        messages = kwargs["messages"]

        response: Any
        if self.streaming:
            response = await self.llm.astream_chat(messages)
        else:
            response = await self.llm.achat(messages)
        return {"output": response}

    @property
    def input_keys(self) -> InputKeys:
        """Input keys."""
        # TODO: support only complete for now
        return InputKeys.from_keys({"messages"})

    @property
    def output_keys(self) -> OutputKeys:
        """Output keys."""
        return OutputKeys.from_keys({"output"})

input_keys property #

input_keys: InputKeys

Input keys.

output_keys property #

output_keys: OutputKeys

Output keys.